跳到主要内容
版本:0.9

从 InfluxDB 迁移

本文档将帮助你了解 GreptimeDB 和 InfluxDB 的数据模型之间的区别,并指导你完成迁移过程。

数据模型的区别

你可能已经熟悉了 InfluxDB 的关键概念, GreptimeDB 的 数据模型 是值得了解的新事物。 下方解释了 GreptimeDB 和 InfluxDB 数据模型的相似和不同之处:

  • 两者都是schemaless 写入的解决方案,这意味着在写入数据之前无需定义表结构。
  • 在 InfluxDB 中,一个点代表一条数据记录,包含一个 measurement、tag 集、field 集和时间戳。 在 GreptimeDB 中,它被表示为时间序列表中的一行数据。 表名对应于 measurement,列由三种类型组成:Tag、Field 和 Timestamp。
  • GreptimeDB 使用 TimestampNanosecond 作为来自 InfluxDB 行协议 API 的时间戳数据类型。
  • GreptimeDB 使用 Float64 作为来自 InfluxDB 行协议 API 的数值数据类型。

以 InfluxDB 文档中的示例数据为例:

_time_measurementlocationscientist_field_value
2019-08-18T00:00:00Zcensusklamathandersonbees23
2019-08-18T00:00:00Zcensusportlandmullenants30
2019-08-18T00:06:00Zcensusklamathandersonbees28
2019-08-18T00:06:00Zcensusportlandmullenants32

上述数据的 InfluxDB 行协议格式为:

census,location=klamath,scientist=anderson bees=23 1566086400000000000
census,location=portland,scientist=mullen ants=30 1566086400000000000
census,location=klamath,scientist=anderson bees=28 1566086760000000000
census,location=portland,scientist=mullen ants=32 1566086760000000000

在 GreptimeDB 数据模型中,上述数据将被表示为 census 表中的以下内容:

+---------------------+----------+-----------+------+------+
| ts | location | scientist | bees | ants |
+---------------------+----------+-----------+------+------+
| 2019-08-18 00:00:00 | klamath | anderson | 23 | NULL |
| 2019-08-18 00:06:00 | klamath | anderson | 28 | NULL |
| 2019-08-18 00:00:00 | portland | mullen | NULL | 30 |
| 2019-08-18 00:06:00 | portland | mullen | NULL | 32 |
+---------------------+----------+-----------+------+------+

census 表结构如下:

+-----------+----------------------+------+------+---------+---------------+
| Column | Type | Key | Null | Default | Semantic Type |
+-----------+----------------------+------+------+---------+---------------+
| location | String | PRI | YES | | TAG |
| scientist | String | PRI | YES | | TAG |
| bees | Float64 | | YES | | FIELD |
| ts | TimestampNanosecond | PRI | NO | | TIMESTAMP |
| ants | Float64 | | YES | | FIELD |
+-----------+----------------------+------+------+---------+---------------+

数据库连接信息

在写入或查询数据之前,需要了解 InfluxDB 和 GreptimeDB 之间的数据库连接信息的差异。

  • Token:InfluxDB API 中的 token 用于身份验证,与 GreptimeDB 身份验证相同。 当使用 InfluxDB 的客户端库或 HTTP API 与 GreptimeDB 交互时,你可以使用 <greptimedb_user:greptimedb_password> 作为 token。
  • Organization:GreptimeDB 中没有组织。
  • Bucket:在 InfluxDB 中,bucket 是时间序列数据的容器,与 GreptimeDB 中的数据库名称相同。

打开 GreptimeCloud 控制台 点击 Manage Your Data 下的 Connection Information. 你可以找到 GreptimeDB URL,数据库名称,以及 token 所需的 username 和 password。

写入数据

GreptimeDB 兼容 InfluxDB 的行协议格式,包括 v1 和 v2。 这意味着你可以轻松地从 InfluxDB 迁移到 GreptimeDB。

HTTP API

你可以使用以下 HTTP API 请求将 measurement 写入 GreptimeDB:

curl -X POST 'https://<host>/v1/influxdb/api/v2/write?bucket=<db-name>' \
-H 'authorization: token <greptime_user:greptimedb_password>' \
-d 'census,location=klamath,scientist=anderson bees=23 1566086400000000000'

Telegraf

GreptimeDB 支持 InfluxDB 行协议也意味着 GreptimeDB 与 Telegraf 兼容。 要配置 Telegraf,只需将 GreptimeDB 的 URL 添加到 Telegraf 配置中:

[[outputs.influxdb_v2]]
urls = ["https://<host>/v1/influxdb"]
token = "<greptime_user>:<greptimedb_password>"
bucket = "<db-name>"
## 留空即可
organization = ""

客户端库

使用 InfluxDB 客户端库写入数据到 GreptimeDB 非常直接且简单。 你只需在客户端配置中包含 URL 和身份验证信息。

例如:

'use strict'
/** @module write
**/

import { InfluxDB, Point } from '@influxdata/influxdb-client'

/** 环境变量 **/
const url = 'https://<host>/v1/influxdb'
const token = '<greptime_user>:<greptimedb_password>'
const org = ''
const bucket = '<db-name>'

const influxDB = new InfluxDB({ url, token })
const writeApi = influxDB.getWriteApi(org, bucket)
writeApi.useDefaultTags({ region: 'west' })
const point1 = new Point('temperature')
.tag('sensor_id', 'TLM01')
.floatField('value', 24.0)
writeApi.writePoint(point1)

除了上述语言之外,GreptimeDB 还支持其他 InfluxDB 支持的客户端库。 你可以通过参考上面提供的连接信息代码片段,使用你喜欢的语言编写代码。

查询数据

GreptimeDB 不支持 Flux 和 InfluxQL,而是使用 SQL 和 PromQL。

SQL 是一种通用的用于管理和操作关系数据库的语言。 具有灵活的数据检索、操作和分析功能, 减少了已经熟悉 SQL 的用户的学习曲线。

PromQL(Prometheus 查询语言)允许用户实时选择和聚合时间序列数据, 表达式的结果可以显示为图形,也可以在 Prometheus 的表达式浏览器中以表格数据的形式查看, 或通过 HTTP API 传递给外部系统。

假设你要查询过去 24 小时内记录的 monitor 表中的最大 CPU。 在 InfluxQL 中,查询如下:

SELECT 
MAX("cpu")
FROM
"monitor"
WHERE
time > now() - 24h
GROUP BY
time(1h)

此 InfluxQL 查询计算 monitor 表中 cpu字段的最大值, 其中时间大于当前时间减去 24 小时,结果以一小时为间隔进行分组。

该查询在 Flux 中的表达如下:

from(bucket: "public")
|> range(start: -24h)
|> filter(fn: (r) => r._measurement == "monitor")
|> aggregateWindow(every: 1h, fn: max)

在 GreptimeDB SQL 中,类似的查询为:

SELECT
ts,
host,
AVG(cpu) RANGE '1h' as mean_cpu
FROM
monitor
WHERE
ts > NOW() - INTERVAL '24 hours'
ALIGN '1h' TO NOW
ORDER BY ts DESC;

在该 SQL 查询中, RANGE 子句确定了 AVG(cpu) 聚合函数的时间窗口, 而 ALIGN 子句设置了时间序列数据的对齐时间。 有关按时间窗口分组的更多详细信息,请参考按时间窗口聚合数据文档。

在 PromQL 中,类似的查询为:

avg_over_time(monitor[1h])

要查询最后 24 小时的时间序列数据, 你需要执行此 PromQL 并使用 HTTP API 的 startend 参数定义时间范围。 有关 PromQL 的更多信息,请参考 PromQL 文档。

可视化数据

GreptimeCloud 控制台提供了名为 Workbench 的数据可视化工作台。 打开控制台, 在 Manage Your Data 下选择 Web Dashboard, 然后创建一个新的 Workbench 文件, 即可按需求创建图表。

迁移数据

你可以通过以下步骤实现从 InfluxDB 到 GreptimeDB 的数据无缝迁移:

Double write to GreptimeDB and InfluxDB

  1. 同时将数据写入 GreptimeDB 和 InfluxDB,以避免迁移过程中的数据丢失。
  2. 从 InfluxDB 导出所有历史数据,并将数据导入 GreptimeDB。
  3. 停止向 InfluxDB 写入数据,并移除 InfluxDB 服务器。

双写 GreptimeDB 和 InfluxDB

将数据双写 GreptimeDB 和 InfluxDB 是迁移过程中防止数据丢失的有效策略。 当使用 InfluxDB 的客户端库时,你可以建立两个客户端实例,一个用于 GreptimeDB,另一个用于 InfluxDB。 有关如何使用 InfluxDB 行协议将数据写入 GreptimeDB 的操作,请参考写入数据部分。

如果无需保留所有历史数据, 你可以双写一段时间以积累所需的最新数据, 然后停止向 InfluxDB 写入数据并仅使用 GreptimeDB。 如果需要完整迁移所有历史数据,请按照接下来的步骤操作。

从 InfluxDB v1 服务器导出数据

创建一个临时目录来存储 InfluxDB 的导出数据。

mkdir -p /path/to/export

使用 InfluxDB 的 influx_inspect export 命令 导出数据。

influx_inspect export \
-database <db-name> \
-end <end-time> \
-lponly \
-datadir /var/lib/influxdb/data \
-waldir /var/lib/influxdb/wal \
-out /path/to/export/data
  • -database 指定要导出的数据库。
  • -end 指定要导出的数据的结束时间。 必须是RFC3339 格式,例如 2024-01-01T00:00:00Z。 你可以使用同时写入 GreptimeDB 和 InfluxDB 时的时间戳作为结束时间。
  • -lponly 指定只导出行协议数据。
  • -datadir 指定数据目录的路径,请见InfluxDB 数据设置中的配置。
  • -waldir 指定 WAL 目录的路径,请见InfluxDB 数据设置中的配置。
  • -out 指定输出目录。

导出的 InfluxDB 行协议数据类似如下:

disk,device=disk1s5s1,fstype=apfs,host=bogon,mode=ro,path=/ inodes_used=356810i 1714363350000000000
diskio,host=bogon,name=disk0 iops_in_progress=0i 1714363350000000000
disk,device=disk1s6,fstype=apfs,host=bogon,mode=rw,path=/System/Volumes/Update inodes_used_percent=0.0002391237988702021 1714363350000000000
...

从 InfluxDB v2 服务器导出数据

创建一个临时目录来存储 InfluxDB 的导出数据。

mkdir -p /path/to/export

使用 InfluxDB 的 influx inspect export-lp 命令 导出数据。

influxd inspect export-lp \
--bucket-id <bucket-id> \
--engine-path /var/lib/influxdb2/engine/ \
--end <end-time> \
--output-path /path/to/export/data
  • --bucket-id 指定要导出的 bucket ID。
  • --engine-path 指定引擎目录的路径,请见InfluxDB 数据设置中的配置。
  • --end 指定要导出的数据的结束时间。 必须是RFC3339 格式,例如 2024-01-01T00:00:00Z。 你可以使用同时写入 GreptimeDB 和 InfluxDB 时的时间戳作为结束时间。
  • --output-path 指定输出目录。

命令行的执行结果类似如下:

{"level":"info","ts":1714377321.4795408,"caller":"export_lp/export_lp.go:219","msg":"exporting TSM files","tsm_dir":"/var/lib/influxdb2/engine/data/307013e61d514f3c","file_count":1}
{"level":"info","ts":1714377321.4940555,"caller":"export_lp/export_lp.go:315","msg":"exporting WAL files","wal_dir":"/var/lib/influxdb2/engine/wal/307013e61d514f3c","file_count":1}
{"level":"info","ts":1714377321.4941633,"caller":"export_lp/export_lp.go:204","msg":"export complete"}

导出的 InfluxDB 行协议数据类似如下:

cpu,cpu=cpu-total,host=bogon usage_idle=80.4448912910468 1714376180000000000
cpu,cpu=cpu-total,host=bogon usage_idle=78.50167052182304 1714376190000000000
cpu,cpu=cpu-total,host=bogon usage_iowait=0 1714375700000000000
cpu,cpu=cpu-total,host=bogon usage_iowait=0 1714375710000000000
...

导入数据到 GreptimeDB

在将数据导入 GreptimeDB 之前,如果数据文件过大,建议将数据文件拆分为多个片段:

split -l 100000 -d -a 10 data data.
# -l [line_count] 创建长度为 line_count 行的拆分文件。
# -d 使用数字后缀而不是字母后缀。
# -a [suffix_length] 使用 suffix_length 个字母来形成文件名的后缀。

你可以使用 HTTP API 导入数据,如写入数据部分所述。 下方提供的脚本将帮助你从文件中读取数据并将其导入 GreptimeDB。

假设你的当前位置是存储数据文件的目录:

.
├── data.0000000000
├── data.0000000001
├── data.0000000002
...

将 GreptimeDB 的连接信息设置到环境变量中:

export GREPTIME_USERNAME=<greptime_username>
export GREPTIME_PASSWORD=<greptime_password>
export GREPTIME_HOST=<host>
export GREPTIME_DB=<db-name>

将数据导入到 GreptimeDB:

for file in data.*; do
curl -i --retry 3 \
-X POST "https://${GREPTIME_HOST}/v1/influxdb/write?db=${GREPTIME_DB}&u=${GREPTIME_USERNAME}&p=${GREPTIME_PASSWORD}" \
--data-binary @${file}
sleep 1
done